Chapter 2 Organic Chemistry

Organic Chemistry

- Study of compounds containing carbon and hydrogen
- Four categories of organic compounds
- -carbohydrates
- -lipids
- –proteins
- -nucleic acids
- –Is CO2 (carbon dioxide) an organic molecule?
- –See Web Site PowerPoint = "Know Your Molecules"

Monomers VS Polymers

- •Monomers a small identical molecules (similar subunits) e.g. amino acid or glucose molecule
- •Polymers molecules made of a repetitive series of identical subunits // e.g. polypeptide
- •An amino acid is a monomer that forms the protein polymer
- •Glucose is a monomer that forms the glycogen polymer.
- •Macromolecules polymers which continue to "enlarge" to form very large organic molecules // high molecular weights /// e.g. protein

Monomers and Polymers

Glucose is a monomer

Glycogen is a polymer of glucose

What is the carbon cycle?

Carbon to Carbon Molecules

- Organic = molecules with carbon and hydrogen
- Carbon has 4 valence electrons
- -may bind with four other atoms to share electrons and complete octet rule.
- -these atoms provide carbon with four more electrons to fill its valence shell // making carbon's valence orbit "stable"
- -forms covalent bonds with hydrogen, oxygen, nitrogen, sulfur, and other elements
- Carbon atoms also bind readily with each other
- –forms branches and ring structures /// forms a carbon chain or carbon backbones
- –able to form 3D matrix (e.g. pencils & diamonds)
- Carbon is the backbone that carries a variety of functional groups

Functional Groups

- small clusters of atoms
 attached to carbon backbone
- determines many of the properties of organic molecules
- •E.g. = hydroxyl, methyl, carboxyl, amino, phosphate

Dehydration Synthesis VS Hydrolysis

- Dehydration synthesis (condensation) is how living cells form polymers
- A link between two atoms is created using oxygen
- –a hydroxyl (-OH) group is removed from one monomer, and a hydrogen (H+) from another monomer
- -producing water as a by-product
- Hydrolysis opposite of dehydration synthesis
- -a water molecule ionizes into -OH and H+
- -the covalent bond linking one monomer to the other is broken
- —the —OH is added to one monomer
- —the H+ is added to the other

Dehydration Synthesis

- Monomers covalently bond together to form a polymer with the removal of a water molecule
- —A hydroxyl group is removed from the blue monomer and a hydrogen is removed from the orange monomer to form water

Hydrolysis

- •Splitting a polymer (lysis) by the addition of a water molecule (hydro) // a covalent bond is broken
- All digestion reactions consists of hydrolysis reactions

**

Organic Molecules: Carbohydrates

- •A hydrophilic organic molecule
- •general formula // note: 2:1 ratio for hydrogen to oxygen
- -(CH₂O)_n // n = number of carbon atoms
- -for glucose, n = 6, so formula is $C_6H_{12}O_6$
- •names of carbohydrates often built from:
- -word root 'sacchar-'
- -the suffix '-ose'
- -both mean 'sugar' or 'sweet' // monosaccharide or glucose

Monosaccharides

- •Simple carbohydrates = simple sugars
- Three important monosaccharides
- –glucose, galactose and fructose
- -same molecular formula C₆H₁₂O₆
- -They have same number of atoms but atoms are arranged differently = isomers
- –produced by digestion of complex carbohydrates(e.g. starch, glycogen)

Disaccharides

- •Sugar molecule composed of 2 monosaccharides
- •3 important disaccharides
- -sucrose table sugar // glucose +
 fructose
- -lactose sugar in milk // glucose +
 galactose
- –maltose grain products // glucose+ glucose

Polysaccharides

- Long chains of glucose molecules
- •Three important polysaccharides (glycogen starch cellulose)
- —Glycogen: energy storage polysacharide in animals
- •made by cells of liver, muscles, brain, uterus, and vagina
- •liver produces glycogen after a meal when glucose level is high, then breaks it down between meals to maintain blood glucose levels
- muscles store glycogen for own energy needs
- uterus "sweats" glycogen to nourish embryo

Polysaccharides

 Starch: energy storage polysaccharide in plants /// only significant digestible polysaccharide in the human diet

Cellulose: structural molecule of plant cell walls ///
this is the "fiber" in our diet our digestive system lack
enzymes to breakdown this polymer passes out of our
digestive system as food residue

Glycogen

Carbohydrate Functions

- Source of energy // all digested carbohydrates converted to glucose // oxidized to make ATP
- Also a structural molecule when conjugated with lipids or proteins
- —glycolipids // e.g. component of cell membrane with lipid inserted into membrane and sugar projecting from surface of membrane
- —glycoproteins // e.g. component of cell membrane with protein inserted into membrane and surgar projecting from surface of membrane

Carbohydrate Functions

- –proteoglycans (mucopolysaccharides) // forms gel between cells – its the "glue that binds cells and tissues together
- •forms gelatinous filler in umbilical cord and eye
- joint lubrication
- •seen as the tough, rubbery texture of cartilage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.		
TABLE 2.6	Carbohydrate Functions	
Туре	Function	
Monosaccharides		
Glucose	Blood sugar—energy source for most cells	
Galactose	Converted to glucose and metabolized	
Fructose	Fruit sugar—converted to glucose and metabolized	
Disaccharides		
Sucrose	Cane sugar—digested to glucose and fructose	
Lactose	Milk sugar—digested to glucose and galactose; important in infant nutrition	
Maltose	Malt sugar—product of starch digestion, further digested to glucose	
Polysaccharides		
Cellulose	Structural polysaccharide of plants; dietary fiber	
Starch	Energy storage in plant cells	
Glycogen	Energy storage in animal cells (liver, muscle, brain, uterus, vagina)	
Conjugated Carbohydrates		
Glycoprotein	Component of the cell surface coat and mucus, among other roles	
Glycolipid	Component of the cell surface coat	
Proteoglycan	Cell adhesion; lubrication; supportive filler of some tissues and organs	

Lipids

- •Hydrophobic organic molecule
- -composed of carbon, hydrogen and oxygen
- -with high ratio of hydrogen to oxygen
- •Less oxidized than carbohydrates, and therefore has more calories/gram
- Five primary human lipids
- -fatty acids
- -triglycerides
- -phospholipids
- -eicosanoids
- -steroids

TABLE 2.7	Lipid Functions
Туре	Function
Bile acids	Steroids that aid in fat digestion and nutrient absorption
Cholesterol	Component of cell membranes; precursor of other steroids
Eicosanoids	Chemical messengers between cells
Fat-soluble vitamins	Involved in a variety of functions including blood clotting, wound healing, vision, and calcium absorption
Fatty acids	Precursor of triglycerides; source of energy
Phospholipids	Major component of cell members; aid in fat digestion
Steroid hormones	Chemical messengers between cells
Triglycerides	Energy storage: thermal insulation; filling space; binding organs together; cushioning organs

Fatty Acids

- •Chains of 4 to 24 carbon atoms // carboxyl (acid) group on one end, methyl group on the other and hydrogen bonded along the sides
- •Classified as:
- -saturated all carbon atoms saturated with hydrogen
- –unsaturated contains C=C bonds without hydrogen
- –polyunsaturated contains many C=C bonds
- -essential fatty acids obtained from diet, body can not synthesize

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Palmitic acid (saturated) CH₃(CH₂)₁₄COOH

Triglycerides (Neutral Fats)

- Three fatty acids covalently bonded to a three carbon alcohol (a glycerol molecule)
- –each bond formed by dehydration synthesis
- –once joined to glycerol /// fatty acids can no longer donate protons
- it is a neutral fats
- -maybe broken down by hydrolysis
- Triglycerides when at room temperature
- —If liquid its called an oils // often polyunsaturated fats from plants
- —If solid its called a fat // saturated fats from animals.
- Primary Functions energy storage, insulation and shock absorption (adipose tissue)

Glycerol plus three fatty acids make a triglyceride molecule. This is how we store fat.

Comparison of Dietary Fats

DIETARY FAT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Phospholipids

- •similar to neutral fat except that one fatty acid replaced by a phosphate group
- •structural foundation of cell membrane
- Amphiphilic // single molecule containing both a neutral and charged region
- -fatty acid "tails" are
 hydrophobic // water fear
- –phosphate "head" is hydrophilic // water seeking

What is a soap bubble?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Width of a Plasma Membrane

Approximately 25 water molecules are needed to span the width of a plasma membrane!

5.5 to 7.5 nm Thick

Eicosanoids

- •20 carbon compounds derived from a fatty acid called arachidonic acid
- hormone-like chemical signals between cells
- •includes prostaglandins produced in all tissues
- -role in inflammation, blood clotting, hormone action, labor contractions, blood vessel diameter

$\star\star$

Steroids and Cholesterol

- •Steroid a lipid with 17 of its carbon atoms in four rings
- •Cholesterol the precursor lipid from which the other steroidal hormones are synthesized
- -E.g. cortisol, progesterone, estrogens, testosterone and bile acids
- Cholesterol
- -synthesized only by animals // especially liver cells // 15% from diet, 85% internally synthesized
- -important component of cell membranes
- -required for proper nervous system function
- -never metabolized for energy!

Cholesterol

"Good" and "Bad" Cholesterol

- •Good and bad is in reference to the phospholipids "transporters"
- •Transport structures (i.e. shells) are constructed of phospholipids and proteins
- •Transporters move triglycerides, fatty acids, fat soluble vitamins, and cholesterol in the blood. Another type of phospholipid transporter moves fat across digestive system's basal absorptive cell surface and into lacteals.
- •'Good' and 'bad' cholesterol refers to two different transporter "types" associated with the blood

"Good" and "Bad" Cholesterol

- •The actual transporters are complexes of cholesterol, fat, phospholipids, and protein
- The transporters form a "hollow" shell
- HDL high-density lipoprotein "good" cholesterol"
- -lower ratio of lipid to protein in its shell
- -may help to prevent cardiovascular disease
- -Picks up free blood cholesterol and returns it to liver
- LDL low-density lipoprotein "bad" cholesterol"
- —high ratio of lipid to protein in its shell
- -contributes to cardiovascular disease
- –May accumulate under endothelial cells to initiate cardiovascular disease.

Structure of Lipoprotein Transporter

Note: fat soluble products are transported inside the shell // pink hydrophillic phosphate heads of the phospholipid make shell water soluble

Proteins

- Greek word meaning "of first importance" // most versatile molecules in the body /// organic molecule
- Protein a polymer of amino acids
- •Amino acid central carbon with 3 attachments // amino group (NH2), carboxyl group (COOH) and radical group (R group)
- •20 amino acids used similar "backbone" to make the proteins but unique radical (R) group
- -properties of amino acid determined by -R group
- -amino acids are defined as either essential or non-essential

Representative Amino Acids

•20 different amino acids in humans // they differ only in the R group

Naming Peptides

- Peptide any molecule composed of two or more amino acids joined by peptide bonds
- •Peptide bond joins the amino group of one amino acid to the carboxyl group of the next
- -formed by dehydration synthesis
- Peptides named for the number of amino acids
- -dipeptides have 2
- -tripeptides have 3
- **–oligopeptides** have fewer than 10 to 15
- -polypeptides have more than 15
- —proteins have more than 50

Dipeptide Synthesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dehydration synthesis (but oxygen is not the link) creates a peptide bond that joins amino acids // covalent bond between carbon and nitrogen = peptide bond

Protein Structure and Shape

Primary structure

-protein's sequence amino acid which is encoded in the genes

Secondary structure

- -coiled or folded shape held together by hydrogen bonds
- –hydrogen bonds between slightly negative C=O and slightly positive N-H groups
- -most common secondary structure are:
- alpha helix springlike shape
- •beta helix pleated, ribbonlike shape

Protein Structure and Shape

Tertiary structure

- -further bending and folding of proteins into globular and fibrous shapes
- •globular proteins —compact tertiary structure well suited for proteins embedded in cell membrane and proteins that must move about freely in body fluid
- •fibrous proteins slender filaments better suited for roles as in muscle contraction and strengthening the skin

Quaternary structure

- -associations of two or more separate polypeptide chains
- -functional conformation three dimensional shape

Structure of Proteins

Conjugated Proteins

- Proteins that contain a non-amino acid moiety are called a prosthetic group
- Hemoglobin contains four complex iron containing rings called a heme moieties

Protein Conformation and Denaturation

- Conformation unique three dimensional shape of protein crucial to function
- –Some proteins have ability to reversibly change their conformation important in.....
- enzyme function
- muscle contraction
- opening and closing of cell membrane pores
- •Denaturation // extreme conformational change that destroys function and protein can not revert back to its original shape // caused by extreme heat, pH or agitation

Primary Structure of Insulin

Proteins Have Many Functions

Structure

- –keratin tough structural protein
- •gives strength to hair, nails, and skin surface
- -collagen durable protein contained in deeper layers of skin, bones, cartilage, and teeth

Communication

- -some hormones and other cell-to-cell signals
- -receptors to which signal molecules bind
- •ligand any hormone or molecule that reversibly binds to a protein

Membrane Transport

- -channels in cell membranes that governs what passes through
- -carrier proteins transports solute particles to other side of membrane
- -turn nerve and muscle activity on and off

Proteins Have Many Functions

Catalysis

-enzymes

Recognition and Protection

- -immune recognition
- -antibodies
- –clotting proteins

Movement

-motor proteins - molecules with the ability to change shape repeatedly

Cell adhesion

- -proteins bind cells together
- -immune cells to bind to cancer cells
- -keeps tissues from falling apart

Enzymes

- •Enzymes proteins that function as biological catalysts
- -permit reactions to occur rapidly at normal body temperature
- Substrate substance that the enzyme acts upon
- Naming Conventions
- –named for substrate with -"ase" as the suffix (e.g. amylase = enzyme that digests starch (note difference for amylose /// "ose" indicates sacharide amylose polymer of glucose)
- •Enzymes lowers **activation energy** energy needed to get reaction started /// enzymes facilitate molecular interaction

Enzymes and Activation Energy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Reaction occurring without a catalyst

(b) Reaction occurring with a catalyst

Enzyme Structure and Action

- Substrate approaches active site on enzyme molecule
- Substrate binds to active site forming enzyme-substrate complex
- –highly specific fit like a 'lock and key'
- –enzyme-substrate specificity
- •Enzyme breaks covalent bonds between monomers in substrate
- •adding H+ and OH- from water Hydrolysis
- •Reaction products released glucose and fructose
- •Enzyme remains unchanged and is ready to repeat the process

Enzymatic Reaction Steps

Catabolic reaction

About Enzymatic Action

- •Enzymes are reusable /// enzymes are not consumed by the reactions
- Astonishing speed /// one enzyme molecule may consume millions of substrate molecules per minute
- Factors that change enzyme shape
- -pH, temperature, agitation
- -alters or destroys the ability of the enzyme to bind to substrate
- –enzymes action have optimum pH /// salivary amylase works best at pH 7.0 /// pepsin works best at pH 2.0
- temperature optimum for human enzymes body temperature (37 degrees C)

Enzymes Control Metabolic Pathways

- Chain of reactions // each step catalyzed by a different enzyme
- α β γ $A \rightarrow B \rightarrow C \rightarrow D$
- •A is initial reactant, B+C are intermediates and D is the end product
- Regulation of metabolic pathways // involves the activation or deactivation of the enzymes
- -cells can regulate pathways /// turn on when end products are needed or turn off when the end products are not needed
- –E.g. enzyme "a" maybe inhibited by end product "D"

Nucleotides

- Organic Molecules
- Three components of a nucleotide
- -nitrogenous base (single or double carbon-nitrogen ring)
- -sugar (monosaccharide)
- –one or more phosphate groups
- •DNA = A, T, G, C
- •RNA = A, U, G, C
- •ATP best know nucleotide ///
 adenine (nitrogenous base) + ribose
 (sugar) + Three phosphate groups

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Adenine

(a)

(b)

DNA Nucleotides

- -DNA (deoxyribonucleic acid)
- •100 million to 1 billion nucleotides long
- Our genes are constructed from DNA
- -instructions for synthesizing all of the body's proteins
- -transfers hereditary information from cell to cell and generation to generation
- –DNA codes for protein // either a structural molecule or an enzyme (enzymes can make other organic molecules)

RNA Nucleotides

- •RNA (ribonucleic acid) 3 types associated with protein synthesis
- •messenger RNA, ribosomal RNA, transfer RNA
- •70 to 10,000 nucleotides long
- carries out genetic instruction for synthesizing proteins
- assembles amino acids in the right order to produce proteins
- single strand // not double stranded like DNA
- •Micro-RNA // functions as a biocatalyst

Adenosine Triphosphate (ATP)

- •body's most important energy-transfer molecule // the molecule which provides energy for all cellular work // "molecular money"
- briefly stores energy gained from exergonic reactions
- •releases it within seconds for physiological work // ATP not used to store energy
- holds energy in covalent bonds
- –2nd and 3rd phosphate groups have high energy bonds // denoted by this symbol " ~ "
- -most energy transfers to and from ATP involve adding or removing the 3rd phosphate

Adenosine Triphosphate (ATP)

- •Adenosine triphosphatases (ATPases) hydrolyze the 3rd high energy phosphate bond
- –separates into ADP + P_i + energy

Phosphorylation

- -addition of free phosphate group to ADP molecule
- –carried out by enzymes called kinases (phosphokinases)
- -ATP can be formed by directly phosphorylation of ADP (substrate level phosphorylation) or by a mechanism within mitochondria called oxidation-phosphorylation which requires using an electron chain and ATP-synthetase

ATP (Adenosine Triphosphate)

ATP contains adenine, ribose and 3 phosphate groups

Sources and Uses of ATP

Overview of ATP Production

Occurs in cytoplasm and is anaerobic.

If oxygen is available then pyruvic converted to acetyl-CoA and moves into mitochondria.

Inside the mitochondria the Krebs Cycle and electron transport chain produces 36 ATP, metabolic water, and carbon dioxide.

Stages of glucose oxidation

- •ATP consumed within 5 to 15 seconds after formation
- •entire amount of ATP in the body would support life for less than 1 minute if it were not continually replenished
- •cyanide halts ATP synthesis // stops electrons from moving down electron transport chain which is inside the mitochondria
- •Two test questions here!!!

Other Nucleotides

Guanosine triphosphate (GTP)

- –another nucleotide involved in energy transfer
- –donates phosphate group to other molecules

Cyclic adenosine monophosphate (cAMP)

- –nucleotide formed by removal of both second and third phosphate groups from ATP
- -formation triggered by hormone binding to cell surface
- -cAMP becomes "second messenger" within cell
- -activates metabolic effects inside cell

Cofactors and Coenzymes

•Some enzymes require one or both of these co-factors for the enzyme to function

Cofactors

- –about 2/3rds of human enzymes require a non-protein cofactor
- inorganic partners (iron, copper, zinc, magnesium and calcium ions)
- —some bind to enzyme and induces a change in its shape, which activates the active site
- –essential to function

Coenzymes

- •Coenzymes = organic cofactors derived from water-soluble vitamins (niacin, riboflavin)
- -they accept electrons from an enzyme in one metabolic pathway and transfer them to an enzyme in another metabolic pathway /// This is an Oxidation-Reduction Reaction
- -the molecule losing the electron is "oxidized" and the molecule gaining the electron is "reduced" (i.e. redox reaction)
- -The electron carrier is reqired by the enzyme to catalyze the reaction reaction (e.g. AB ----> A + B)
- -NAD to NADH or FAD to FADH are examples of electron carriers

Coenzyme NAD⁺

•NAD+ transports electrons from one metabolic pathway to another